skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Àlvarez Montaner, Josep"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. This paper investigates the existence and properties of a Bernstein–Sato functional equation in nonregular settings. In particular, we construct [Formula: see text]-modules in which such formal equations can be studied. The existence of the Bernstein–Sato polynomial for a direct summand of a polynomial over a field is proved in this context. It is observed that this polynomial can have zero as a root, or even positive roots. Moreover, a theory of [Formula: see text]-filtrations is introduced for nonregular rings, and the existence of these objects is established for what we call differentially extensible summands. This family of rings includes toric, determinantal, and other invariant rings. This new theory is applied to the study of multiplier ideals and Hodge ideals of singular varieties. Finally, we extend known relations among the objects of interest in the smooth case to the setting of singular direct summands of polynomial rings. 
    more » « less